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Sir:
The unusual facility of the four-membered ring peroxides to generate elec-
tronically excited states by thermolysis has focused attention on their chemi- ]

cal behavior.] In recent reports we have described our findings on the chemi-

2,3,4,5

cal behavior of dimethyldioxetanone (l). In particular we find that

thermolysis of dioxetanone 1 in any one of a number of non-polar solvents at

30°C gives both excited singlet and triplet acetone in yields of 0.1% and 1.5%

1.3

respectively; eq. Also, we find that dioxetanone 1 1is subject to catalytic

decomposition by electron donors (ACT), and excited state generation by the
path we have designated chemically initiated electron exchange luminescence

(CIeeL) ;%0 eq. 2.

0—0 0*] 0*3 0
_—
CH3—{—& A )J\ A )L + C02 (1)
; by, 0 CHy CHy CIfj THy CHy CH,
: 0" )
] -0 -CO )L : JL + * 2
. ACT 2 et ACT (2) ;
| CH CH, CH
3 3
CH ‘

Tetramethyldioxetane (g) also generates electronically excited acetone upon
thermo]ysis.7 However, in contrast to dioxetanone l it does not react readily
with electron donors, and the yield of excited acetone from g is nearly 20 times
greater than from l despite the fact that the dioxetanone rearrangement is more

exothermic by ca. 20 kca]/mole.8 Herein we report the results of theoretical

calculations on the parent unsubstituted dioxetanone. These calculations offer

considerable insight into the structure and reactivity of this molecule, and

provide a basis for understanding the different properties of peroxides l and g.




SCF calculations were performed on dioxetanone using a 4-31G basis set9 of
contracted Gaussian functions. The equilibrium structure, shown in Figure 1,

was determined using the gradient procedure of Pu]ay,]O

and by point-by-point
serches. The energetics of stretching the oxygen-oxygen bond was investigated
by fixing its length and then re-optimizing the two C-0-0 ring angles, constran-
ing the ring to be planar in these calculations. The effect of increasing the
oxygen-oxygen bond length on the energy of the molecule is given in Table 1.
Orbital energies at these distorted structures are given in Table 2, and plots
of selected orbitals are given in Figure 2.H SCF energies of the 2A' anion
state, formed by adding an electron to the 16a' orbital, were calculated at
these optimized structures.

The equilibrium ground-state structure of dioxetanone that is predicted by
these calculations has two noteworthy aspects. The oxygen-oxygen bond length
js somewhat longer than that determined by X-ray crystallography for adamantyli-

12 However, the most

deneadamantane-1,2-dioxetane (g) by Wynberg and coworkers.
surprising feature of the predicted structure of dioxetanone is that the atoms
of the four membered ring are found to be essentially coplanar. This finding
is in contrast to the structure of dioxetane 3 in which one oxygen atom of the
peroxide is lifted ca. 21° from the plane defined by the remaining ring atoms.

Of significance to the understanding of the thermal chemistry of dioxetanone
js the prediction that stretching the oxygen-oxygen bond does not cause a concomi-
tant increase in the length of the ring carbon-carbon bond, Table 1. Although we

have not carried the calculations all the way through to the transition state,

progress along the reaction coordinate is significant since the energy increase

obtained in a substantial fraction of the experimentally determined activation




enthalpy for dioxetanone l. The implication of these findings is that the
thermolysis of dioxetanone may proceed through the biradical state formed by
crossing of the 14a'and 16a’ orbitals as a result of cleavage of the oxygen-
oxygen bond. A similar conclusion was reached by Goddard and Harding]3 for
dioxetane using GVB calculations. This conclusion is supported by extensive
experimental evidence.M
These findings suggest an explanation for the difference in excited state
yields obtained from thermolysis of dioxetanone l and dioxetane g. Cleavage of
the oxygen-oxygen bond in both cases leads to a biradical presumably initially

in a singlet state. Intersystem crossing to the triplet biradical is therefore

in competition with cleavage of the ring carbon-carbon bond; Scheme 1,

ox1 ol o3
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For the case of dioxetanone the loss of CO2 competes with intersystem crossing;

for dioxetane it is the loss of a simple carbonyl compound that is in competi-
tion with intersystem crossing. The former is more exothermic and, therefore,
is probably more rapid, giving the biradical less opportunity to cross to the
triplet manifold. Consistent with this postulate is the experimental observa-
tion that the yield of excited singlet acetone from thermolysis of l and % is
quite similar, but :he yield of triplet acetone from | is considerable reduced
from that of %.3

Uur formulation of the CIEEL mechanism has as a key tenet the activated
transfer of an electron from an electron donor to the peroxide. We postulate further
that the oxygen-oxygen bond of the peroxide cleaves either simultaneously with
the transfer of the electron or very rapidly following its arrival. Several
of the results of the calculation bear on this mechanism, First, transfer of
an electron from an activator {perylene, for example) to dimethyldioxetangne is
estimated from electrochemical data to be endothermic at the equilibrium ground
state geometry.]5 Indeed, we have measured the activation energy for this
process and find it to be 16 kcal/mole, The calculations show that stretch-
ing the oxygen-oxygen bond of dioxetanone results in a large decrease in the
enerqy of the unoccupied 16a' orbital (Table 2), thereby facilitating the
electron transfer. Thus, as we have previously suggested, the activating pro-

cess for the electron transfer in the CIEEL mechanism is most 1ikely stretching

of the oxygen-oxygen bond.

The second result of the calculation that aids in the description of the
CIEEL mechanism concerns the enerqy of the radical anion obtained by placing
an electron in the 16a' orbital. This orbital is antibonding between the
peroxide oxygens, Figure 2d. Table 3 lists the energy of the anion at various

oxygen-oxygen bond distances., The striking result is that on increasing this




bond distance 0.2 A from its equilibrium value the energy of the anion drops by
ca. 52 kcal/mole. We take this result to indicate that the oxygen-oxygen bord
of the radical anion of dioxetanone is dissociative and that irreversible cleav-
age follows immediately the receipt of the electron. This conclusion is entirely
consistent with our experimental observations on the dioxetanone system.

In sum, these calculations provide new insight into the detailed chemistry
of dioxetanone, though highly quantitative predictions will require more exten-
sive calculations. They substantiate a reasonable rationalization of the differ-
ent yields observed from dioxetanone i and dioxetane 2. And they provide some

confirmation of the major postulates of the CIEEL mechanism.
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Table 1. Dioxetanone Structures and Relative Energies.

Ro-o(R) Re_c(A) “co0? tcoo® E(a.u.) AE(kcal)
1.503 1.502 89.5 90.5 -300.8921 0.0
1.525 1.502 89.0 90.0 -300.8919 0.2
1.55 1.502 88.5 89.5 ~300.8910 0.7
1.60 1.501 87.7 88.4 -300.8877 2.8
1.70 1.501 85.5 86.5 ~300.8765 9.8

The methylene carbon atom is referred to. b

bThe carbonyl carbon atom is referred to.
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Table 2. Dioxetanone Orbital Ener'gies.a

00
1.503 1.525 1.55 1.60 1.70
Virtual 18a’ 0.237 0.236 0.234 0.233 0.231
17a' 0.214 0.214 0.214 0.214 0.214
16a’ 0.138 0.127 0.114 0.090 0.046
5a" 0.123 0.123 0.124 0.124 0.125
Occupied 43" -0.483 ‘ -0.486 -0.489 -0.493 -0.501 |
15a' -0.492 -0.492 -0.492 -0.49 -0.490
14a' -0.577 -.0573 -0.568 -0.558 -0.537
3a" -0.586 -0.585 -0.583 -0.580 -0.575
13a’ -0.601 -0.603 -0.605 -0.609 -0.617
2a" -0.628 -0.628 -0.628 -0.629 -0.631
12a* -0.724 -0.723 -0.722 -0.720 -0.717
1a' -0.745 -0.744 -0.742 -0.738 -0.733
la" -0.762 -0.760 -0.758 -0.756 -0.751

q0rbital energies were evaluated at the structures in Table 1 and are given

in a.u.
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Table 3. Anion Energies.a

Ry_o(R) E(a.u.)
1.503 -300.8284
1.525 -300.8419
1.55 -300.8555
1.60 -300.8780
1.70 -300.9111

d5tructures used were those in Table 1.

nE(kcal)

0.0
-8.5
-17.0
-31.2
-51.9




Figure Captions

' Figure 1. Optimized equilibrium structure of dioxetanone,

Figure 2. Molecular orbital contour p]ots]1 of the occupied or internal orbitals,

(a) 13a', (b) 14a', and {(c) 15a‘, and the virtual or external

orbital (d) 16a’'.
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